Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Author(s): 

FEIG S.A. | YAFFE M.J.

Issue Info: 
  • Year: 

    1995
  • Volume: 

    33
  • Issue: 

    6
  • Pages: 

    178-186
Measures: 
  • Citations: 

    1
  • Views: 

    138
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 138

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    8
  • Issue: 

    3 (ویژه نامه ناباروری 3)
  • Pages: 

    106-106
Measures: 
  • Citations: 

    0
  • Views: 

    851
  • Downloads: 

    0
Abstract: 

تکنولوژی جدید در زمینه ناباروری باعث شده است که برای درمان مردان عقیم که آزوسپرم بوده اند تحولی ایجاد نماید به طوری که اسپرم با تعداد محدودی که از طریق پونکسیون اپیدیدیم PESA یا با استخراج آن از نسج بیضه TESE حاصل می شود با روش میکرواینجکشن TCSI امکان باروری داشته باشد. لذا با توجه به موقعیت پیش آمده در درمان این افراد یافتن همان تعداد کم اسپرمها نیز اهمیت پیدا کرده است و از طرفی Silber مشخص کرده است که 50% موارد آزوسپرمی غیر انسدادی دارای کانونهای اسپرماتوژنر هستند. بنابراین چنانچه به روشهای مناسبی دسترسی پیدا کرد امکان یافتن تعداد کم اسپرم در بیماران و باروری وجود دارد. مطالعات مختلفی از نظر بیوفیزیکی و وضعیت ظاهری بیضه ها، میزان عروق آن، آزمایشات هورمونی، ایمونولوژی و همچنین چگونگی نمونه برداری انجام شده تا بهترین و موثرترین راه در مشخص کردن و استخراج اسپرم از بیضه شناخته شود.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 851

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2020
  • Volume: 

    92
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    51
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 51

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

GASTROENTEROLOGY

Issue Info: 
  • Year: 

    2018
  • Volume: 

    154
  • Issue: 

    3
  • Pages: 

    568-575
Measures: 
  • Citations: 

    1
  • Views: 

    77
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 77

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2019
  • Volume: 

    10
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    32
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 32

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    52
  • Issue: 

    4
  • Pages: 

    281-291
Measures: 
  • Citations: 

    0
  • Views: 

    155
  • Downloads: 

    18
Abstract: 

Automatic topic Detection seems unavoidable in social media analysis due to big text data which their users generate. Clustering-based methods are one of the most important and up-to-date categories in topic Detection. The goal of this research is to have a wide study on this category. Therefore, this paper aims to study the main components of clustering-based-topic-Detection, which are embedding methods, distance metrics, and clustering algorithms. Transfer learning and consequently pretrained language models and word embeddings have been considered in recent years. Regarding the importance of embedding methods, the efficiency of five new embedding methods, from earlier to recent ones, are compared in this paper. To conduct our study, two commonly used distance metrics, in addition to five important clustering algorithms in the field of topic Detection, are implemented by the authors. As COVID-19 has turned into a hot trending topic on social networks in recent years, a dataset including one-month tweets collected with COVID-19-related hashtags is used for this study. More than 7500 experiments are performed to determine tunable parameters. Then all combinations of embedding methods, distance metrics and clustering algorithms (50 combinations) are evaluated using Silhouette metric. Results show that T5 strongly outperforms other embedding methods, cosine distance is weakly better than other distance metrics, and DBSCAN is superior to other clustering algorithms.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 155

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 18 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    1388
  • Volume: 

    1
Measures: 
  • Views: 

    939
  • Downloads: 

    0
Abstract: 

خطوط راه آهن شهری برای حرکت ایمن و سرویس بهینه، به سیستمهای کنترل و علائم پیشرفته نظیر اینترلاکینگ، حفاظت اتوماتیک، مدارهای راه، ماشین سوزن و غیره مجهز می شوند و در نتیجه از بروز تصادم و سرعت غیر مجاز جلوگیری می گردد. با این حال موانعی نیز وجود دارند که در سیستمهای کنترل و علائم مرسوم قابل تشخیص و حفاظت نیستند که نمونه آنها عبور افراد و یا جا گذاشتن وسایل تعمیر و نگهداری گروههای کاری و غیره در خط می باشند. طبیعی است که به علت ایجاد ریسک، تشخیص آنها و کنترل قطار از اهمیت بالایی برخوردار است. برای تشخیص این موانع و کاهش ریسک، نیازمند سیستمهای تشخیص دهنده دیگری هستیم که متفاوت از سیستم های علائم بکار رفته مرسوم است؛ ولیکن مساله انطباق و سازگاری با سیستهای موجود در آنها وجود دارد.بدین منظور، در این تحقیق سیستم های مختلف تشخیص موانع در خط معرفی می شوند.شرکت های مترو بسته به نیازها و انتظاراتی که از یک سیستم تشخیص موانع دارند، نوع طراحی خطوط مترو و نیز بودجه در اختیارشان می توانند هر یک از آن ها را به دلخواه انتخاب کنند. در این مقاله ابتدا به تحلیل و معرفی انواع روشهای تشخیص متناسب با خطوط متروی تهران پرداخته شده و سپس با در نظر گرفتن داده های خطوط متروی تهران و عملیات و سیستم های علائم موجودآن، توجیه استفاده از چنین سیستم هایی در خطوط راه آهن شهری تهران بررسی می شود.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 939

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    11
  • Issue: 

    2
  • Pages: 

    157-164
Measures: 
  • Citations: 

    0
  • Views: 

    244
  • Downloads: 

    218
Abstract: 

Introduction. Ultrasonography is the preferable imaging technique for monitoring and assessing complications in kidney allograft transplants. Computer-Aided diagnostic system based on texture analysis in ultrasonographic imaging is recommended to identify changes in kidney function after allograft transplantation. Materials and Methods. A total of 61 biopsy-proven kidney allograft recipients (11 rejected and 50 unrejected) were assessed by a Computer-Aided diagnostic system. Up to 270 statistical texture features were extracted as descriptors for each region of interest in each recipient. Correlations of texture features with serum creatinine level and differences between rejected and unrejected allografts were analyzed. An area under the receiver operating characteristic curve was calculated for each significant texture feature. Linear discriminant analysis was employed to analyze significant features and increase discriminative power. Recipients were classified by the first nearest neighbor classifier. Results. Fourteen texture features had a significant correlation with serum creatinine level and 16 were significantly different between the rejected and unrejected allografts, for which an area under the curve values were in the range of 0. 575 for difference entropy S(4, 0) to 0. 676 for kurtosis. Using all 16 features, linear discriminant analysis indicated higher performance for classification of the two groups with an area under the curve of 0. 975, which corresponded to a sensitivity of 90. 9%, a specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 98. 0%. Conclusions. Texture analysis was a reliable method, with the potential for characterization, and can help physicians to diagnose kidney failure after transplantation on ultrasonographic imaging.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 244

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 218 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    25
  • Issue: 

    78
  • Pages: 

    117-137
Measures: 
  • Citations: 

    0
  • Views: 

    107
  • Downloads: 

    26
Abstract: 

INTRODUCTIONExtraction and processing of various features with the help of aerial imagery reduces the time and financial costs associated with the use of ground mapping and the resulting human error. Advances in the field of aerial sensors in terms of spatial and spectral resolution with precise place and performance picking up altitude from the ground have led to the use of each part of information about terrestrial phenomena such as spectral and spatial characteristics Brought. Today, complementary data used to detect complications are Lidar data, the sensor of which is sent and received, and the electromagnetic spectrum in the near-infrared spectrum (in its aerial form) and joined the spectrum. Pays close infrared and green band (in space type). DATA AND METHODSLidar data and spectral images were analyzed using different types of algorithms effective in landfill extraction to assess density. New layers of images were obtained in the form of raster from the study area, which was analyzed by performing slope extraction steps on flat and sloping surfaces. Buildings that were definitely not buildings were removed. The size and spectral characteristics of the missing structures were identified and the parcels were redistributed to extract the impermeable surfaces. Which led to the achievement of two levels of parcels and impenetrable points. The data set is related to the northern part of Bandar Anzali, which includes a vertical aerial photograph, irregular cloud points of the region with dense one to two points per square meter with an average point space of 0.69 square meters, and vertical aerial photograph with spatial resolution. It is 8 cm square. RESULTS AND DISCUSSIONIn this study, a different method for extracting buildings using airborne Lidar data and ultracam images was presented. The proposed system used geometric and spatial information of Lidar data and ultracam images, which included three general steps, in the first step; Lidar data were filtered and extracted using spectral clustering of buildings. In the second step; The obtained model was compared with the two-dimensional boundaries of buildings by the height threshold method. In the third step; After extraction, the first building boundaries were merged with the structures extracted by the checker algorithm. In the stage of separating terrestrial from non-terrestrial points, all points related to land were classified and extracted. The remaining points were classified as roof points, which were dealt with in the fault section of the buildings. All the functions used enabled the system to successfully extract the structures from the Lidar data. CONCLUSIONThe data for the first return points were subtracted from the data for the last return points and a fixed value was obtained which depended on the altitude accuracy of the difference between the two returns. In addition to the mentioned method, the clustering method was used during the research that each cluster belonged to a roof section so that the characteristics of each surface model could be easily determined.Then, to complete the shape of the roof, the footprint of the building that was extracted was used. In fact, the borderlines and inner vertices extracted only part of the shape of the border. Other sections, such as vertical edges, were not detected due to intersection. This is due to the lack of front sampling. Finally, the items extracted through spectral clustering in eCoginition software and two-dimensional boundaries extracted from ENVI Lidar software, to increase the accuracy of land surface extraction (buildings) and make the area of ​​buildings studied in this data Were merged. As mentioned; After extraction, the primary building boundaries were merged with the structures extracted by the checker algorithm. In the section of buildings diagnostics, buildings with errors were discussed and the evaluation of the results showed that the system used has relatively reached the set goals and the methods used include the threshold method. Elevation, clustering, spectral method, and integration method were evaluated for each of the four blocks with error rates of 28%, 15%, and 0%, respectively, based on the area of ​​extracted tolls to the study area. The error of each building was first examined in general and then in detail, and it was found that aerial Lidar technology has an extraordinary ability to collect very right and dense samples of altitude measurements of cities and a new level of detail information can be Accurately extracted building density automatically and efficiently from aerial Lidar data. In 417 buildings that were surveyed and analyzed, the height of the buildings was achieved with high accuracy and all the buildings in the study area were extracted with a compact and organic density as well as scattered and planned.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 107

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 26 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    1
  • Issue: 

    2
  • Pages: 

    28-56
Measures: 
  • Citations: 

    0
  • Views: 

    149
  • Downloads: 

    0
Abstract: 

تالاب ها به عنوان یکی از منابع ارزشمند طبیعی از اهمیت بالایی برخوردارند، اما با وجود این مزایا، این اکوسیستم های حیاتی به سرعت در حال تخریب هستند. شیوه های آبیاری گسترده، برداشت بی رویه از منابع آب زیرزمینی و زهکشی از جمله عواملی هستند که منجر به تخریب تالاب ها می شوند. علاوه بر این، بسیاری از تالاب ها به زمین های کشاورزی یا شهری تبدیل شده اند. در این تحقیق، با هدف شناسایی پهنه های آبی، از شاخص های طیفی مانند شاخص MNDWI و داده های چند منبعی نظیر تصاویر ماهواره ای لندست 5، 7، 8 و 9 و سنتینل-2 همراه با تحلیل سری زمانی و روش تشخیص تغییرات (Change Detection) استفاده شد. همچنین روند تغییرات پوشش گیاهی در کنار تغییرات پهنه های آبی تالاب های دریاچه بختگان-طشک و مهارلو مورد بررسی قرار گرفت. مساحت پهنه های آبی برای سال های 2017 تا 2022 محاسبه شد و یک سری زمانی برای دوره 1996 تا 2025 برای تحلیل تغییرات تهیه گردید. نتایج نشان داد که شاخص MNDWI با استفاده از مدل ماشین بردار پشتیبان (SVM)، از نظر کیفیت طیفی و مکانی، نتایج قابل توجهی در آشکارسازی پهنه های آبی و تشخیص تغییرات ارائه داده است. میزان مساحت پهنه های آبی به صورت درصدی محاسبه شد. تالاب بختگان-طشک که در سال 2017 مساحتی برابر با 15 درصد از پهنه آبی داشته، تا سال 2022 به 0. 083 درصد کاهش یافته است. همچنین، دریاچه مهارلو در سال های 2017 و 2022 به ترتیب مساحتی برابر با 1. 793 و 1. 79 درصد از نظر پهنه آبی داشته است. در سال 2020، مساحت پهنه آبی دریاچه مهارلو به 4. 822 درصد افزایش یافته بود. این افزایش به ویژه در سال آبی 1398 (2019-2020) به علت بارش های بی سابقه ثبت شده است. از دیگر نتایج برجسته این تحقیق این بود که شاخص MNDWI با صرف کمترین زمان و هزینه توانست پهنه های آبی را از دیگر پدیده ها به صورت دقیق جدا کند. این شاخص با استفاده از آستانه گذاری، علاوه بر استخراج پهنه های آبی، اثرات ناشی از پوشش گیاهی، خاک و عوارض انسان ساخت را نیز کاهش داده یا حتی حذف کرده است. اعتبارسنجی مدل با استفاده از طبقه بندی SVM انجام شد که با ضریب کاپا 0. 93 و صحت کلی 97 درصد برای دوره اخیر، نشان دهنده مناسب بودن این شاخص برای چنین مطالعاتی است.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 149

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button